
The ICAT Data Server (IDS): 
interface, implementation and 

experience

Frazer Barnsley, 

Steve Fisher <dr.s.m.fisher@gmail.com>,

Wojciech Grajewski and 

Antony Wilson

Rutherford Appleton Laboratory - STFC

NOBUGS 24-26 September 2014

mailto:dr.s.m.fisher@gmail.com


Overview

● How the IDS fits into the ICAT Project

(http://icatproject.org) or doi:10.5286/SOFTWARE/ICAT

● Interface

● Design

● Calls

● Experience from three deployments

● Summary of experience



ICAT and IDS

● The metadata catalogue of

ICAT provides a SOAP web

service interface to metadata

● Designed to support scientific

facilities

● Schema includes all you might

need from proposal to

publication

ICAT -

Metadata

● IDS provides a “RESTful”

interface to the data files

cataloged by ICAT

● Complements ICAT

IDS -

Data



Building on ICAT and IDS

IJP - a job portal able to submit 

jobs operating on ICAT 

catalogued data

TopCAT - provides view of 

ICAT catalogued data from 

multiple facilities 

FUSE - prototype showing 

ICAT catalogued data.

All need uniform access to:

● metadata - ICAT 

● data - IDS

TopCAT

ICAT

ICAT

IDS

IDS

IJP

FUSE



Components of the ICAT Project

TopCAT

ICAT

ICAT

IDS

IDS

authn_XXX

authn_simple

authn_XXX

authn_ldap

IDS 

Plugin
Single 

Storage

IDS 

Plugin Two level 

Storage

IJP

FUSE



ICAT Catalogue

● The metadata catalogue of

ICAT provides a SOAP

web service interface to an

underlying database with

an easy to use API.

● Authentication makes use

of plugins

● Authorization is rule based.

● Around forty different entity

types in the ICAT schema

● Four are of interest to the

IDS.

Facility

Investigation

Dataset

Datafile DatafileFormat



The IDS Interface

● When a file is uploaded metadata are stored in ICAT. 

● ICAT authorization rules for the datafile metadata 

applied to control read/write access to IDS files. 

● Multiple downloaded files are zipped. 

● The interface has archive and restore calls that suggest 

two level storage. Either: 

o all data available on “archive storage” with recently used data cached 

on “main storage”

or

o all data in “main storage” 



Interface Design

● Avoided SOAP to transfer large files efficiently

● REST-like but with @Path as verbs rather than nouns 

such as archive or getSize.

● @Produces text/plain, application/octet-stream or 

application/json

● @Consumes multipart/form-data or application/octet-

stream

● Many calls can operate in a uniform manner on sets of 

datafiles, datasets and investigations



The Calls

● put

● getStatus

● getSize

● getData

● getLink

● prepareData

● isPrepared

● getData

● delete

● ping

● getServiceStatus

● isReadOnly

● isTwoLevel

● archive

● restore



An implementation with plugins

A plugin can implement three interfaces
● main storage interface

o decides how to store individual data files

● archive storage interface
o decides how to store zipped dataset of datafiles

 this assumes that files of a dataset are often wanted 

together.

 zipping potentially saves space

● zip file structure interface
o defines the structure of the zip file contents

Zip files are generated on the fly 
● no delay in starting to deliver requested data provided it 

is in main storage.



LSF - plugin and experience

● The Lasers for Science Facility 

has been using a two level file 

storage plugin. 

o Main storage is on 

normal disk 

o Archive storage is on 

HSM file system (DMF)

● This is a new prototype 

deployment so we were free 

to define our own storage 

structure.

● No problems encountered but it 

has not had much use yet.



ISIS - plugin and experience

● ISIS already have a lot of data stored

o avoid directory structure change

● They have sufficient disk to 

hold all data on line
o They only need main storage

● Experiment data files are 
o written by the ISIS software and 

catalogued with ICAT

o IDS not involved in writing of 

experimental data files

o Users download via the IDS 

(normally from TopCAT)

● Derived data
o users can also use the IDS for both upload and download

● They appreciate the speed of the implementation.



DLS - plugin and experience

● They already have a very large amount of data which is 

stored on tape. 

● Like ISIS they do not

store data via the IDS

● Wrote a plugin to 
o use the existing tape 

system as archive storage

o use a large disk as main 

storage

● The main difficulty is that archive storage plugin is expected 

to deliver zipped datasets 
o The datafiles are not stored that way. 

o This requires accessing all the datafiles of a dataset and zipping them up. 

● Enhancement planned to allow archive storage to be 

organised by datafile or by dataset.



Summary of experience

● The basic idea works

o facility independent interface to read and write 

datafiles using ICAT catalog and ICAT authz rules

● The IDS needs to be able to work with very different 

pre-existing data storage structures

o facilities don’t want to shuffle huge volumes of data 

to adopt an ICAT style data hierarchy

● Facilities want their own ZIP file layout


