Owen Arnold, Michael Reuter, Alex Buts, Martyn Gigg, Andrei Savici, Nick Draper

VATES : The problem

- Highly pixelated instruments
- Large data volumes
- Many dimensions of interest
- Need for n-dimensional data manipulation
- One workbench required

VATES : Requirements

- Containers and pipeline for multidimensional data
- Visualisation of multi-dimensional data
- Simulation and fitting of multidimensional data
- Pluggable/Extendable in many ways

Platform Design Choice: Mantid

Mantid: Instrument and technique independent Data Reduction and Analysis.

Joint project by ISIS and SNS

- Overlap in target platforms
- Overlap in common functionality
- Assemble one continuous chain
- Shared maintenance effort
- No need for another standalone tool

Platform Design Choice: ParaView

- Cross-platform
- Well supported
- Open source
- Pipeline branching
- Suitable for large volumes of data

Previous and Existing Tools

Many successful tools to draw ideas from and extend

Historic Overview

Overview

Multi Dimensional Visualization

Model Fitting and Simulation

Visualisation $\leftarrow \rightarrow$ model fitting/simulation

- Highly iterative procedure
- Require seamless integration with Mantid and visualisation
- Allow user-supplied models for scattering
 - 'foreground': typically global across dataset + resolution
 - 'background': simple (e.g. Linear background), no resolution
- Links with existing Mantid Fit framework
- Foreground and background models are extendable

Model fitting: current status and forward view

- Verify & expand stock foreground model library
- Speed optimisation
- User interface:
 - easy-to-use templates for simple user models
 - Work-bench interface
- Distributed computing (clusters)
- Possible investigation into using GPU resources
- Other resolution function models

Simulation of MERLIN instrument resolution convolved with a Strontrium122 foreground model

PeaksViewer

PeaksViewer

Peak Integration

- 1. Heavily uses both Mantid and VATES
- 2. Started out with a spherical integration algorithm
- 3. Ellipsoid integration
- 4. Experimenting with CCL approach

Two way interaction

Looking Forwards

- Complete scriptability. A well thought out API.
- Better cohesion between tools.
- MD normalization work.
 - Properly account for solid angle and flux in Horace scans
- Processing of large datafiles.
- Turning our attention to MPI and GPU processing
- Continued scientific led development

ma

Questions

